夏国在一年前成功突破了10量子比特纠缠态,在名义上超过了谷歌。

ib最近也公布了基于8量子比特纠缠态创造的50量子比特芯片,英特尔、苹果等也在相关技术上取得了重大突破。

但是无论是夏国还是谷歌,量子芯片的技术做出来的,但是应用却相当困难。

他们的技术主要有三个弊端。

第一个弊端:虽然创造了强大的量子芯片,但是因为控制量子纠缠态相当困难,因此只能用量子芯片进行规定的几个计算。

这是什么意思?这个意思就是谷歌或者ib或者夏国的量子芯片,既无法用来看电影,也不能用来上网,更不能用来玩儿游戏只能解几个指定的方程。从量子芯片的研究到商用,大家都还有很长的路要走。

第二个弊端,包括夏国在内,目前市面上存在的所有量子芯片计算机都真特么大!

因为目前量子芯片计算机使用的超导技术,隔音、隔热、隔电磁、运行温度接近绝对零度等等一系列的苛刻条件。

这让一个小小的量子芯片关在一个隔离装置里面运行,而隔离装置占地基本上要10到20个平方,所有的隔离设备重量加起来有好几十吨。

没有用户愿意将几十吨的笔记本抱在脚上用,也没有用户愿意购买几十吨重的计算机,即便这个计算机的运算速度非常快,能够秒速破解室友的密码获取他的毛片。

第三个弊端就是能量消耗!

控制量自己纠缠和做运算的能量消耗先不说,控制那些隔离设备的能量消耗就恐怖了。

首先你得接通工业用电,安装专门的变压器和360伏的电压然后才能够使用。每当你运行量自己算计时,你都会听见外面变电箱滋滋滋的电流声,还得防止变电箱过热造成火灾。

其次运行一个小时的量子芯片计算机,你得做好缴纳几百块电费的准备。

即便芯片的运算速度足够快,也没有人会用这个耗电、巨无霸、只会解几种特定方程式傻缺量子芯片,除非你是傻缺。消费者当然不是傻缺,所以谷歌等公司的量子芯片除了在科研领域外没有任何市场。

但是盘古科技实验室的量子芯片就不一样了。